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DNA extracted from archaeological and paleontological remains is usually damaged by biochemical processes
postmortem. Some of these processes lead to changes in the structure of the DNA molecule, which can result in the
incorporation of incorrect nucleotides during polymerase chain reaction. These base misincorporations, or miscoding
lesions, can lead to the inclusion of spurious additional mutations in ancient DNA (aDNA) data sets. This has the
potential to affect the outcome of phylogenetic and population genetic analyses, including estimates of mutation rates and
genetic diversity. We present a novel model, termed the delta model, which estimates the amount of damage in DNA data
and accounts for its effects in a Bayesian phylogenetic framework. The ability of the delta model to estimate damage is
first investigated using a simulation study. The model is then applied to 13 aDNA data sets. The amount of damage in
these data sets is shown to be significant but low (about 1 damaged base per 750 nt), suggesting that precautions for
limiting the influence of damaged sites, such as cloning and enzymatic treatment, are worthwhile. The results also
suggest that relatively high rates of mutation previously estimated from aDNA data are not entirely an artifact of
sequence damage and are likely to be due to other factors such as the persistence of transient polymorphisms. The delta
model appears to be particularly useful for placing upper credibility limits on the amount of sequence damage in an
alignment, and this capacity might be beneficial for future aDNA studies or for the estimation of sequencing errors in

modern DNA.

Introduction

The postmortem degradation of nucleic acids
presents a significant challenge to ancient DNA (aDNA)
research. After death, DNA molecules are subject to hydro-
lytic and oxidative fragmentation and to cross-linking,
which can adversely affect subsequent polymerase chain
reaction (PCR)-based analyses (Pddbo 1989; Lindahl 1993;
Handt et al. 1996; Hoss et al. 1996). Ultimately, DNA
damage leads to a reduction in both the number and the
length of potential template molecules available for PCR
amplification, limiting the utility of ancient sequences in
subsequent analysis.

The forms of damage that are most problematic for ge-
netic analyses are miscoding lesions, which do not neces-
sarily hinder PCR replication but lead to the incorporation
of erroneous bases during PCR. Miscoding lesions have
been characterized in numerous aDNA analyses (Hoss et al.
1996; Hansen et al. 2001; Hofreiter et al. 2001; Gilbert,
Hansen, et al. 2003; Gilbert et al. 2007), but the relative
importance of the various types of DNA damage remains
contentious. This is at least partly due to the experimental
difficulty in characterizing the miscoding lesions. Most
statistical investigations into aDNA damage have relied
on cloning to generate a distribution of mutations for in-
dividual samples. Cloned sequences can be derived from
either of the complementary DNA strands; however, it has
been difficult to distinguish between the actual damage
event and the associated base modification on the comple-
mentary strand. As a consequence, Hansen et al. (2001)
proposed that all types of miscoding lesions could be sub-
divided into 6 complementary groups (A — C/T — G; A —
TT—>AA—>GT—->CC—>G/G—CC—oT/G— A;
and C — A/G — T) and that the 2 most commonly ob-
served changes in aDNA be referred to as Type I (A —
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G/T — C)and Type II (C — T/G — A) transitions. Recent
analyses using emulsion-based clonal sequencing, which
makes it possible to identify strand-specific damage, have
shown that the majority of damage-derived miscoding le-
sions were Type II transitions (Stiller et al. 2006; Gilbert
et al. 2007).

Several experimental protocols have been proposed in
order to limit the number of damaged sequences available
as template molecules for PCR, such as treatment with
uracil-N-glycosylase (UNG) to eliminate modified uracil
residues which result from the deamination of cytosine
(Padbo 1989; Hofreiter et al. 2001). Post-PCR cloning of
amplification products can be used to visualize the spectrum
of mutations at each site, with the aim of identifying the true
sequence (e.g., Gilbert, Willerslev, et al. 2003; Shapiro
et al. 2004), but it has been suggested that extensive cloning
(>20 clones per fragment) might be required in order to
achieve an acceptable degree of confidence in the accuracy
of the sequence (Bower et al. 2005). Such experimental pro-
tocols are therefore expensive and time consuming and may
not always be feasible, particularly for the large data sets
required for population genetic analyses (e.g., Lambert
et al. 2002; Shapiro et al. 2004). Additionally, when the
amount of damage is high and the starting number of tem-
plates is very small, it might never be possible to eliminate
the effects of damage completely from an aDNA data set.

Effect of Miscoding Lesions on Phylogenetic Analysis

The level of accuracy achieved in a sequencing project
is a compromise between cost (both practical and eco-
nomic) and coverage (taxonomic and/or genomic). For
some purposes, such as identification of homologues, mod-
erate sequence accuracy may suffice (States and Botstein
1991). For phylogenetic analyses, however, it is important
to obtain nucleotide sequences that are as accurate as pos-
sible. Errors in sequences can artificially increase the ob-
served level of genetic diversity, which will influence the
estimation of demographic parameters, substitution model
parameters, divergence times, and mutation rates (Clark and



Whittam 1992). For example, even relatively low rates of
sequence damage can inflate estimates of genetic diversity:
in an alignment of 500 bp from 100 individuals, a rate of
1 damaged site per 1,000 nt in an alignment will lead to
40 haplotypes being observed (assuming that damage is
Poisson distributed; see supplementary table S1, Supple-
mentary Material online) Sequence errors have a particu-
larly large impact on studies of data sets which have low
genetic variation, such as those from individuals within
a population, where they can lead to considerable overes-
timation of molecular evolutionary rates (Ho et al. 2005).
Miscoding lesions will behave as additional mutations
along the terminal branches in a phylogeny, artificially in-
creasing the length of these branches and potentially mis-
leading phylogenetic inference. Sequence errors are less
likely to have a detrimental impact on phylogenetic analy-
ses of data sets with moderate levels of genetic variability
because they will represent a smaller proportion of the total
sequence variation. Nevertheless, erroneous sequences
have the potential to misinform primer design and, for in-
stance, result in quantitative PCR errors.

Over the past decade, aDNA data sets have been in-
creasing considerably in size, with large population studies
and genome projects becoming more frequent (Lambert
et al. 2002; Shapiro et al. 2004; Noonan et al. 2005; 2006;
Poinar et al. 2006). With this growing database of aDNA
sequences, a better understanding of the distribution of
damage in these data and of the effect of miscoding lesions
on population genetic and phylogenetic analyses will be
paramount to conducting accurate and successful studies
of aDNA. Such information can aid in the identification of
spurious polymorphisms caused by damage and in detecting
damage-related biases in subsequent sequence analyses.

To investigate the effect of miscoding lesions in
aDNA analyses, we introduce a simple model of sequence
damage in a Bayesian phylogenetic framework. This model
introduces a single parameter providing a measure of
the nucleotide error rate, which represents a combination
of postmortem damage and polymerase-derived base mis-
incorporation. The parameter accounts for some of the
sequence variation on the tips of the tree, thereby compen-
sating for spurious mutations due to miscoding lesions.

Using simulation, we generate sequences with known
amounts of damage in order to explore the capacity of the
delta model to estimate miscoding lesions accurately. We
then use the delta model to estimate the number of miscod-
ing lesions in a number of aDNA data sets.

Materials and Methods
Delta Model

We implemented a model of DNA damage in the
Bayesian Markov chain Monte Carlo (MCMC) program,
BEAST v1.3 (Drummond and Rambaut 2003), allowing
us to use it in combination with any of the large range
of models of nucleotide evolution available in this frame-
work. The damage model adds a single parameter, delta,
which represents the average amount of damage per nucle-
otide. In the BEAST framework, each branch in the tree is
ascribed a rate of molecular evolution in units of substitu-
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tions per site per unit time. In the simplest case, all branches
have the same rate (the molecular clock) but this assump-
tion can be relaxed (Drummond et al. 2006). The product of
the rate of a branch and the time that it represents gives the
expected number of substitutions per site, which is used to
calculate the likelihood of the tree (Felsenstein 1981). The
damage model adds delta additional substitutions per site to
each external branch to represent substitutions due to DNA
damage. The delta parameter is then sampled in the Bayes-
ian MCMC kernel in a similar manner to the other contin-
uous parameters of the model with a uniform prior bounded
at zero. For details of the sampling scheme used by BEAST
see Drummond et al. (2002) and Drummond et al. (2006).

Simulations

To assess the accuracy of the delta model in identify-
ing the number of miscoding lesions, we first performed
analyses on simulated data sets in which nucleotide errors
had been introduced in known quantities. Analyses were
performed on 2 data sets, which were chosen to approxi-
mate the type of data that might be used in an aDNA anal-
ysis. This analysis was performed in 3 steps: 1) construction
of phylogenetic trees using real aDNA data; 2) simulation
of sequence evolution and introduction of erroneous nu-
cleotides; and 3) Bayesian analysis of aDNA data sets using
the delta model.

In step 1, 2 aDNA data sets were chosen in order to
construct starting trees (see supplementary fig. S1, Supple-
mentary Material online for examples): a 34-taxon cave lion
(Panthera leo spelaea) data set, consisting of individuals
ranging in age from 12 to 60 (Barnett R, unpublished data),
and a 70-taxon bison (Bison bison) data set, with 10 se-
quences selected randomly from each of 6 age categories
(0-10 thousand years ago, 10-20 thousand years ago, ...,
50-60 thousand years ago; Shapiro et al. 2004). For each
data set, Bayesian phylogenetic analysis was performed us-
ing BEAST with a constant-size coalescent prior on the tree
and with the ages of the tips given by radiocarbon dates.
The substitution model for each data set was chosen by
comparison of Akaike information criterion (AIC) scores
using Modeltest v3.7 (Posada and Crandall 1998). The
MCMC analysis was run for 2,000,000 steps and the tree
was recorded every 50,000 steps, resulting in posterior sam-
ples of 40 trees from each data set.

In step 2, simulations were performed on each tree us-
ing Seq-Gen v1.5.3 (Rambaut and Grassly 1997). In all
cases, simulation parameters matched the characteristics
of the real sequence data sets, including sequence ages,
alignment length, estimated mutation rate, and estimated
substitution model parameters. This approach generates
parametric replicates of the 2 original data sets, hereafter
referred to as the pseudo—cave lion and pseudo-bison data
sets. The sequences were artificially “damaged” using
anovel program, Sequescence (written by S.Y.W.H., avail-
able from http://abc.zoo.ox.ac.uk). The damage was as-
sumed to be Poisson distributed and to consist of 5%
type I (A — G/T — C) transitions and 95% type II
(G — A/C — T) transitions (Gilbert et al. 2007). Four cat-
egories of damage were used: 0, 0.001, 0.005, and 0.01
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Table 1
Estimates of Damage Levels in a Range of aDNA Data Sets

Damage Per Site Total Damage

Sample Age Range Aligned Length

Data Set Size thousand years ago (bp) Mean 95% HPD Per Sequence Per Alignment
Adélie penguin 9 0-12 313 242 x 1073 8.41 x 1074-4.08 x 1073 0.76 72.8
Aurochs 40 2-12 379 231 x 107* 337 x 1078-5.89 x 107* 0.09 3.49
Bison

With modern 182 0-60 601 151 x 1073 6.14 x 107%-1.71 x 1073 0.91 165.2

Without modern 154 1-60 203 x 1073 1.34 x 107°-2.81 x 1073 1.22 187.5
Brown bear 30 10-59 130 275 x 1073 3.63 x 1077-5.96 x 1073 0.36 10.7
Cave bear 26 27-80 288 9.69 x 107*  4.17 x 1077-2.27 x 1073 0.28 73
Cave hyena 10 38-51 366 405 x 10*  7.85x 1078-1.16 x 1073 0.15 1.48
Cave lion 34 12-62 213 6.05 x 107*  1.07x 1077-1.43 x 1073 0.13 4.4
Horse 12 1-28 348 3.68 x 107> 4.01 x 107%-7.24 x 1073 1.28 15.4
Moa 14 1-6 241 174 x 1072 1.75 x 107°-3.58 x 107> 0.42 5.9
Musk ox 10 044 177 6.52 x 107* 9.81 x 107%-1.91 x 1073 0.12 1.2
Musk ox (cytb) 10 0-44 114 9.79 x 107*  1.01 x 1077-2.96 x 1073 0.11 1.1
Ox 36 4-8 379 3.87 x 107*  5.11 x 1077-8.57 x 107* 0.15 5.3
Tuco-tuco (cyth) 45 0-10 253 326 x 107* 337 x 1077-7.94 x 107* 0.08 3.7

Note.—Data sets were obtained from the following studies: Aurochs (Edwards et al. forthcoming), bison (Shapiro et al. 2004), brown bear (Barnes et al. 2002), cave
bear (Loreille et al. 2001; Hofreiter et al. 2002; Orlando et al. 2002), cave lion (Barnett R, unpublished data), horse (Vila et al. 2001), moa (Huynen et al. 2003), musk ox
(MacPhee et al. 2005), ox (Bollongino et al. 2006), and social tuco-tuco (Chan et al. 2006).

mean errors per base. Base damage was treated as an irre-
versible and time-independent process. Each damage cate-
gory was applied to 10 pseudo—cave lion and 10 pseudo-
bison simulated data sets. The “artificial” damage can be
taken to represent a combination of sequencing error and
damage, but for the sake of simplicity the former can be
regarded as negligible compared with the latter.

In step 3, the 80 data sets were analyzed using BEAST
with and without the delta model. A uniform prior on the
interval [0,1] was used for the delta parameter. Analyses
were performed as described above, but with samples drawn
every 500 steps over a total of 2,000,000 steps. Samples
from the posterior were checked for convergence and
acceptable mixing using Tracer v1.3 (Rambaut and
Drummond 2004).

Analysis of Real Data

We then used the delta model to estimate the amount
of miscoding lesions in 12 published and 1 unpublished
aDNA data sets. Unless otherwise indicated, all sequences
were from the mitochondrial control region: 1) Adélie pen-
guin (Pygoscelis adeliae); 2) aurochs (Bos primigenius); 3)
bison (Bison bison/Bison priscus); 4) brown bear (Ursus
arctos); 5) cave bear (Ursus spelaeus); 6) cave hyaena
(Crocuta spelaea); 7) cave lion (Panthera leo spelaea);
8) horse (Equus caballus); 9) Mappin’s moa (Pachyornis
mappini); 10) musk ox (Ovibos moschatus); 11) musk
ox, cytochrome b; 12) ox (Bos taurus); and 13) social tu-
co-tuco (Ctenomys sociabilis), cytochrome b. Due to the
availability of abundant modern sequences for bison, we
conducted analyses both including and excluding modern
sequences in order to determine their effect on the analysis.
Some details of these data sets can be found in table 1 and
the BEAST input files are available from the authors on
request.

For each species, aDNA sequences with known radio-
carbon ages were collected from GenBank. The substitution
model for each data set was chosen by assessment of AIC

scores using Modeltest. As above, BEAST analyses were
performed assuming a strict molecular clock and incorpo-
rating radiocarbon ages as prior information. A constant-
size coalescent prior was placed on the tree. For each data
set, the MCMC was run for 10,000,000 steps following
1,000,000 discarded burn-in steps, with samples drawn ev-
ery 1,000 steps. Samples from the posterior were checked
for convergence and acceptable mixing using Tracer.

Results
Simulations

In the analyses of simulated data sets with known dam-
age rates, estimates of damage using the delta model were
generally accurate for the pseudo—cave lion data sets,
whereas there was a small but consistent overestimation
of damage in the pseudo-bison data sets (fig. 1a). For both
data sets, significantly nonzero estimates of damage levels
were obtained even when there was no actual damage in the
sequences.

Analyses performed without the delta model tended to
overestimate the mutation rate when damage was present
(fig. 1b). The pattern of overestimation is particularly no-
ticeable for the pseudo—cave lion sequences. Addition of
the delta model removed this bias from the estimates,
thereby increasing the accuracy of BEAST in recovering
the true mutation rate. For the pseudo—cave lion and
pseudo-bison data, the true rate was contained within the
95% highest posterior density (95% HPD) 100% and
90% of the time, respectively.

Real Data

The amount of miscoding lesions estimated from the
real aDNA data sets ranged from 2.3 x 10~ per site (1 mis-
coding lesion for every 4,329 nt) in aurochsen to 3.7 x 10>
per site (1 miscoding lesion for every 272 nt) in horses
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Fic. 1.—Results from Bayesian phylogenetic analyses of damaged
sequence data generated by simulation. All error bars represent *+1
standard error. (a) Estimates of damage per site made using the delta
model. The unlabeled dashed line represents y = x. (b) Estimates of the
mutation rate made with and without the delta model. The 2 horizontal
dashed lines indicate the true mutation rates (i.e., those used for
simulation), with the top and bottom lines denoting the rates in cave lions
and bison, respectively.

(fig. 2 and table 1). The estimated totals range from 1.1
damaged nucleotides in the musk ox data set (from a total
of 1,140 nt) to 165 of 109,382 nt in the full bison data set.
Based on regression analyses, no significant relationships
were found between the estimated level of damage and
the number of sequences, age of the oldest sequence, or
the estimated mutation rate. Three studies did not have their
sequences checked by independent replication; the damage
rates in these data sets were higher, but not significantly so
(P = 0.19, 1-tailed r-test).

For each data set, estimated mutation rates were rela-
tively high compared with those estimated from phyloge-
netic studies (for a discussion of this issue, see Ho et al.
2005). These elevated rates, ranging from 11.1% per
MY in horses to 112% per MY in Adélie penguin (table 2),
are obtained in spite of the correction of damage-related bi-
as through the delta parameter. The rate estimate from Adé-
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FiG. 2.—Bayesian estimates of sequence damage for 13 aDNA data
sets. The error bars denote 95% HPDs. Details of the data sets are given in
table 1.

lie penguin is consistent with an earlier Bayesian analysis of
the same penguin sequences (Lambert et al. 2002). In most
cases, however, the mean rate estimates are not particularly
meaningful because of very large associated 95% HPDs.
Mutation rates could not be estimated from the 2 musk
ox alignments due to poor MCMC convergence, which
may be due to the limited variation among the sequences.
Subsequent analyses, which are not shown here, demon-
strated that estimates of the delta parameter did not change
when the mutation rate was fixed to an arbitrary value.

Discussion
aDNA Damage

The results of the simulations indicate that the delta
model is capable of measuring the proportion of damage
in DNA sequences with reasonable accuracy. In some
cases, there is a slight tendency to overestimate the actual
amount of damage, possibly due to the treatment of genuine
polymorphisms as damage. For this reason, the delta model
appears to be very effective in placing upper limits on the
amount of miscoding lesions that may be present in a data
set, but it is probably inappropriate for analyzing sequences
from multiple species.

Interestingly, there appear to be few miscoding lesions
in the majority of the real data sets analyzed in this study,
with estimated damage rates of less than 2.0 x 107> per
nucleotide, or 1 damaged site per 500 nt. The most damaged
alignments were those from horse, brown bear, and Adélie
penguin, which exhibited estimated damage levels of
3.68 x 1072,2.75 x 1072, and 2.42 x 10" per base, respec-
tively. As expected, excludlng modern (presumably un-
damaged) sequences from the bison data set results in an
increase in the average amount of damage estimated over
the data set, although the 95% HPDs between the 2 esti-
mates overlap to some extent. The simulations suggest that
when there is no actual damage, the delta model produces
mean estimates of around 0.5-2 damaged sites per 1,000
bp. The majority of aDNA data sets have estimated damage
falling in this region, indicating that recent aDNA studies
have been successful in addressing the problem of damage.
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Table 2
Estimates of Mutation Rates in a Range of aDNA Data Sets,
Made Using the Delta Model

Mutation Rate (% per MY)

Data Set Mean 95% HPD
Adélie penguin 112 31.8-198
Aurochs 63.5 15.1-118
Bison (all) 22.5 14.7-30.6
Brown bear 78.3 9.43-138
Cave bear 13.2 4.02-25.1
Cave lion 20.2 3.15-40.4
Horse 11.1 1.77-30.8
Moa 67.2 1.30-209
Musk ox N/A® N/A®
Musk ox (cyth) N/A? N/A?

Ox 13.3 0.21-40.8
Social tuco-tuco (cytb) 41.7 9.04-81.0

Note.—Unless otherwise indicated, all sequences are from the mitochondrial
control region.

# Mutation rates could not be reliably estimated for the two musk ox data sets,
due to convergence problems in the MCMC analysis. This did not affect estimates
of the delta parameter.

In turn, this suggests that current practices in aDNA re-
search, including cloning and UNG treatment, are having
a positive effect on reducing the number of spurious muta-
tions introduced by damage. It is also noted that aDNA data
are often obtained by amplifying small fragments that are
ultimately concatenated to provide the full-length target se-
quence. In many cases, these small fragments overlap to
some extent, resulting in regions within the sequence that
are independently replicated. Indeed, any process that gen-
erates multiple PCR amplifications of the same sequence
fragment, including cloning, overlapping amplification,
and replication, will serve to increase the chance of iden-
tifying inconsistent bases, thereby reducing the effect of
spurious mutations on the data set.

Unfortunately, it was not possible either to quantify or
qualify the effects of UNG treatment, replication of full or
partial sequences, or cloning on damage rates. Most aDNA
studies did not state whether sequences were treated with
UNG, and all but one study performed cloning. There
was no significant evidence of a higher damage rate in data
sets that had not been checked by independent replication,
but this may have been due to the limited sample size or the
effect of the other forms of replication described above.

High estimated levels of damage in some data sets
could be due to sparse sampling, which increases the prob-
ability that different sequences will not share polymor-
phisms. This has the effect of increasing the number of
base changes assigned to terminal branches. For this reason,
it is expected that the accuracy of the delta model will be
greatest for large, thoroughly sampled data sets.

Overall, the delta model appears to work best when
a large amount of damage is present in the sequence data.
At low levels of damage, the model lacks sufficient power
to distinguish between damage and genetic variation, espe-
cially if the latter makes a substantial contribution to the
total sequence variation. It is also notable that the delta
model produced nonzero damage estimates for the undam-
aged simulated data. This is partly because delta is a scale
parameter (bounded at zero but with no upper bound), but it

is also likely that the delta model is treating some of the
genuine polymorphism as sequence errors. This problem
is exacerbated in analyses of data sets comprising fewer
than 10 sequences, when there is a significant correlation
between the number of tips and the estimated value of delta
(results not shown). This correlation disappears for larger
data sets; for this reason, our analyses were restricted to data
sets comprising at least 10 sequences.

Mutation Rates

The high estimates of mutation rates, combined with
the relatively low levels of sequence damage, provide
a strong indication that sequence errors alone are insuffi-
cient to explain the “time dependency of molecular rate es-
timates” hypothesis, which postulates that molecular
evolutionary rates appear to decline with calibration depth
(Ho et al. 2005). Phylogenetic methods are liable to over-
estimate the mutation rate if spurious polymorphisms are
present. This is clearly evident in the analysis of the
pseudo—cave lion data sets, for which the overestimation
is particularly marked because the original sequences ex-
hibit low variation. As a result, any induced damage will
form a substantial proportion of the total sequence varia-
tion, hence making a large contribution to the overestima-
tion of the mutation rate.

We were not able to test some of the sequences that
were published in the earlier years of aDNA research, when
cloning was not routine (Higuchi et al. 1984; Handt et al.
1996), because these data sets are small and consist of short,
fragmentary sequences. The delta model would have been
particularly useful for investigating these sequences, which
might have had high levels of damage because rigorous au-
thentication criteria had not yet been adopted (for the most
recent discussion of criteria, see Gilbert et al. 2005).

Future aDNA studies can profit from using the delta
model to place upper credibility limits on the amount of
sequence damage present in an alignment. It could also
be used to assess the efficacy of damage-limiting precau-
tions, such as cloning, UNG-treatment, and high-fidelity
Taq polymerases. In theory, the delta model can also be
used to detect sequencing errors, provided that multiple se-
quences from the same loci are available and the amount of
error is not negligible. With respect to the latter, for exam-
ple, genome projects appear to have sequencing errors of
about 1 per 10,000 bp (Hill et al. 2000; Schmutz et al.
2004), which is effectively negligible from the perspective
of the delta model. In contrast, single-pass sequencing of
noncoding regions can yield error rates as high as 3.1
per 1,000 bp (Hill et al. 2000), which is well within the de-
tection range of the delta model. Damage levels are likely to
be lower for coding regions, however, for several reasons.
First, damage is easier to detect because of the lower
amount of natural sequence variation, and second, damage
tends to occur at sites that are highly polymorphic, such as
the mutation hot spots in the mitochondrial control region
(Gilbert, Willerslev, et al. 2003).

The current delta model is simplistic and could be
extended in a number of ways. For example, the damage
process could be explicitly modeled in finer detail, using



a time-independent damage substitution matrix. Rather than
being uniform among tips, multiple delta parameters could
be assigned among the sequences or could be modeled in an
age-dependent manner. The present amount of available
aDNA and damage data is perhaps too limited for these
models to be tested reliably.

We have demonstrated that the delta model is able to
estimate levels of damage accurately from simulated data,
but it would be ideal to measure damage in situ. Unfortu-
nately, techniques have not yet been developed to measure
molecular damage directly from the DNA molecule. Future
advances in molecular biological techniques will undoubt-
edly improve our understanding of the processes causing
sequence damage and increase our power to detect this
damage.

Supplementary Material

Supplementary table S1 and figure S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/)
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